Axion Electrodynamics in Solids

Sid Parameswaran

Saturday Mornings of Theoretical Physics Oxford, November 26, 2022

PHYSICAL REVIEW

LETTERS

Volume 58	4 MAY 1987	NUMBER 18
Two Applications of Axion Electrodynamics		
Frank Wilczek		
Institute for Theoretical Physics, University of California, Santa Barbara, Santa Barbara, California 93106 (Received 27 January 1987)		

Whether or not axions¹ have any physical reality, their study can be a useful intellectual exercise.

Also, it is (I shall argue) not beyond the realm of possibility that fields whose properties partially mimic those of axion fields can be realized in condensed-matter systems.

Axions in Solids?

High-energy physics: $\theta(\mathbf{x}, t)$ is a fundamental field describing axion dynamics in QCD

High-energy physics: $\theta(\mathbf{x}, t)$ is a fundamental field describing axion dynamics in QCD "Standard Model" of Solids = electrons + ions + Coulomb interactions

(governed by Maxwell's equations, not QCD)

No room for extra <u>fundamental</u> fields ("UV" description is fixed)

High-energy physics: $\theta(\mathbf{x}, t)$ is a fundamental field describing axion dynamics in QCD "Standard Model" of Solids = electrons + ions + Coulomb interactions

(governed by Maxwell's equations, not QCD)

No room for extra <u>fundamental</u> fields ("UV" description is fixed)

Q. How can we mimic axions in solids?

A. as <u>emergent phenomena</u> at low energies, modifying Maxwell's equations

High-energy physics: $\theta(\mathbf{x}, t)$ is a fundamental field describing axion dynamics in QCD "Standard Model" of Solids = electrons + ions + Coulomb interactions (governed by Maxwell's equations, not QCD)

No room for extra <u>fundamental</u> fields ("UV" description is fixed)

Q. How can we mimic axions in solids?

A. as <u>emergent phenomena</u> at low energies, modifying Maxwell's equations

Maxwell Lagrangian with an axion θ -term: fine structure constant $\alpha = 1/137$

$$\mathcal{L}_{\rm EM} = rac{1}{8\pi} \left(\boldsymbol{E}^2 - \boldsymbol{B}^2 \right) \; + \;$$

Disclaimer: we'll be discussing ''static'' axions for most of the talk, and in ordinary electromagnetism Image credit: Wikipedia, Etsy Charges & currents from electrons and ions = <u>sources</u> of **E** and **B**

$$\mathcal{L}_{\rm EM} = \frac{1}{8\pi} \left(\boldsymbol{E}^2 - \boldsymbol{B}^2 \right) - \rho \boldsymbol{A}_0 - \boldsymbol{j} \cdot \boldsymbol{A} \qquad \begin{array}{l} \boldsymbol{E} = -\boldsymbol{\nabla} \boldsymbol{A}_0 - \partial_t \boldsymbol{A} \\ \boldsymbol{B} = -\boldsymbol{\nabla} \times \boldsymbol{A} \end{array}$$

Maxwell's Equations (= Euler-Lagrange equations for A_0 , **A**)

$$\mathbf{\nabla} \cdot \mathbf{B} = 0$$
 $\mathbf{\nabla} \times \mathbf{E} = -\partial_t \mathbf{B}$ (no sources - unchanged from vacuum)

$$\boldsymbol{\nabla} \cdot \boldsymbol{E} = 4\pi\rho \qquad \boldsymbol{\nabla} \times \boldsymbol{B} = 4\pi\boldsymbol{j} + \partial_t \boldsymbol{E}$$

To go further, we need a physical picture of ρ and j (e.g. metal vs. <u>insulator</u>)

<u>Insulators</u>: charges/currents bound to ions \Rightarrow electric/magnetic dipoles fixed in space

Polarization and Magnetization

<u>Insulators</u>: charges/currents bound to ions \Rightarrow electric/magnetic dipoles fixed in space

 \Rightarrow charges/currents cancel on averaging \Rightarrow nonzero only <u>at boundaries</u>

<u>Insulators</u>: charges/currents bound to ions \Rightarrow electric/magnetic dipoles fixed in space

 \Rightarrow charges/currents cancel on averaging \Rightarrow nonzero only <u>at boundaries</u>

 \Rightarrow write $\rho \& \mathbf{j}$ in terms of "polarization" & "magnetization" (need $\partial_t \mathbf{P}$ for consistency)

$$ho = - \boldsymbol{\nabla} \cdot \boldsymbol{P}$$
 $\boldsymbol{j} = \boldsymbol{\nabla} \times \boldsymbol{M} + \partial_t \boldsymbol{P}$

<u>Insulators</u>: charges/currents bound to ions \Rightarrow electric/magnetic dipoles fixed in space

 \Rightarrow charges/currents cancel on averaging \Rightarrow nonzero only <u>at boundaries</u>

 \Rightarrow write $\rho \& \mathbf{j}$ in terms of "polarization" & "magnetization" (need $\partial_t \mathbf{P}$ for consistency)

$$ho = - \boldsymbol{\nabla} \cdot \boldsymbol{P}$$
 $j = \boldsymbol{\nabla} \times \boldsymbol{M} + \partial_t \boldsymbol{P}$

Introduce "coarse-grained" fields averaged over atomic scales:

$$\begin{array}{c} \boldsymbol{\nabla} \cdot (\boldsymbol{E} + 4\pi \boldsymbol{P}) = 0 \\ \text{``displacement} \\ \text{field''} \quad \boldsymbol{D} \end{array} \qquad \begin{array}{c} \boldsymbol{\nabla} \times (\boldsymbol{B} - 4\pi \boldsymbol{M}) = \partial_t (\boldsymbol{E} + 4\pi \boldsymbol{P}) \\ \text{``magnetic field} \\ \text{strength''} \quad \boldsymbol{H} \end{array} = \partial_t (\boldsymbol{E} + 4\pi \boldsymbol{P}) \\ \boldsymbol{D} \end{array}$$

S.A. Parameswaran | Axion Electrodynamics in Solids | Oxford Saturday Morning of Theoretical Physics 26.11.22

Consider applying **E** to a dielectric medium (no frozen-in polarization)

Consider applying **E** to a dielectric medium (no frozen-in polarization)

Consider applying **E** to a dielectric medium (no frozen-in polarization)

Similarly, if there is no frozen-in magnetization,

 $M = \chi_m H$

Consider applying **E** to a dielectric medium (no frozen-in polarization)

Similarly, if there is no frozen-in magnetization,

$$\boldsymbol{D} = (1 + 4\pi\chi_e)\boldsymbol{E} \equiv \boldsymbol{\epsilon}\boldsymbol{E}$$

dielectric
constant

$$\boldsymbol{B} = (1 + 4\pi\chi_m)\boldsymbol{H} \equiv \mu \boldsymbol{H}$$

$$\uparrow magnetic permeability$$

 \rightarrow

F,

 $\boldsymbol{P} = \chi_e \boldsymbol{E}$

 $M = \chi_m H$

Consider applying **E** to a dielectric medium (no frozen-in polarization)

Similarly, if there is no frozen-in magnetization,

$$\boldsymbol{D} = (1 + 4\pi\chi_e)\boldsymbol{E} \equiv \epsilon \boldsymbol{E}$$

dielectric
constant

 $\boldsymbol{P} = \chi_e \boldsymbol{E}$

 $M = \chi_m H$

Can capture role of medium via an "effective Lagrangian"

$$\mathcal{L}_{\mathrm{EM}}^{\mathrm{eff}} = rac{1}{8\pi} \left(\epsilon \boldsymbol{E}^2 - rac{1}{\mu} \boldsymbol{B}^2
ight)$$

Consider applying **E** to a dielectric medium (no frozen-in polarization)

Similarly, if there is no frozen-in magnetization,

$$oldsymbol{D} = (1 + 4\pi\chi_e) oldsymbol{E} \equiv \epsilon oldsymbol{E}$$

dielectric
constant

$$\boldsymbol{B} = (1 + 4\pi\chi_m)\boldsymbol{H} \equiv \mu \boldsymbol{H}$$

$$\uparrow magnetic permeability$$

 $\boldsymbol{P} = \chi_e \boldsymbol{E}$

 $M = \chi_m H$

Can capture role of medium via an "effective Lagrangian"

$$\mathcal{L}_{\rm EM}^{\rm eff} = \frac{1}{8\pi} \left(\epsilon \boldsymbol{E}^2 - \frac{1}{\mu} \boldsymbol{B}^2 \right)$$

Lesson: each insulator is effectively a new "vacuum" for electromagnetism

The insulators we normally encounter can be recast as

$$\mathcal{L}_{\rm EM}^{\rm eff} = \frac{1}{8\pi} \left(\epsilon \boldsymbol{E}^2 - \frac{1}{\mu} \boldsymbol{B}^2 \right)$$

How does a θ -term change Maxwell's equations in media?

The insulators we normally encounter can be recast as

$$\mathcal{L}_{\rm EM}^{\rm eff} = \frac{1}{8\pi} \left(\epsilon \boldsymbol{E}^2 - \frac{1}{\mu} \boldsymbol{B}^2 \right) + \frac{\alpha}{2\pi} \frac{\theta}{2\pi} \boldsymbol{E} \cdot \boldsymbol{B}$$

Maxwell

Axion

How does a θ -term change Maxwell's equations in media?

 $\nabla \cdot (\boldsymbol{E} + 4\pi \boldsymbol{P} - \frac{\alpha}{\pi} \boldsymbol{\theta} \boldsymbol{B}) = 0$ $\nabla \times (\boldsymbol{B} - 4\pi \boldsymbol{M} + \frac{\alpha}{\pi} \boldsymbol{\theta} \boldsymbol{E}) = \partial_t (\boldsymbol{E} + 4\pi \boldsymbol{P} - \frac{\alpha}{\pi} \boldsymbol{\theta} \boldsymbol{B})$

The insulators we normally encounter can be recast as

$$\mathcal{L}_{\rm EM}^{\rm eff} = \frac{1}{8\pi} \left(\epsilon \boldsymbol{E}^2 - \frac{1}{\mu} \boldsymbol{B}^2 \right) + \frac{\alpha}{2\pi} \frac{\theta}{2\pi} \boldsymbol{E} \cdot \boldsymbol{B}$$

Maxwell

Axion

How does a θ -term change Maxwell's equations in media?

$$\nabla \cdot (\boldsymbol{E} + 4\pi \boldsymbol{P} - \frac{\alpha}{\pi} \boldsymbol{\theta} \boldsymbol{B}) = 0$$
$$\nabla \times (\boldsymbol{B} - 4\pi \boldsymbol{M} + \frac{\alpha}{\pi} \boldsymbol{\theta} \boldsymbol{E}) = \partial_t (\boldsymbol{E} + 4\pi \boldsymbol{P} - \frac{\alpha}{\pi} \boldsymbol{\theta} \boldsymbol{B})$$

Effectively, $P
ightarrow P - rac{lpha}{4\pi^2} heta B$

and

Magnetic field induces electric polarization

$$\boldsymbol{M} \rightarrow \boldsymbol{M} - \frac{\alpha}{4\pi^2} \theta \boldsymbol{E}$$

Electric field induces magnetization

The insulators we normally encounter can be recast as

$$\mathcal{L}_{\rm EM}^{\rm eff} = \frac{1}{8\pi} \left(\epsilon \boldsymbol{E}^2 - \frac{1}{\mu} \boldsymbol{B}^2 \right) + \frac{\alpha}{2\pi} \frac{\theta}{2\pi} \boldsymbol{E} \cdot \boldsymbol{B}$$

Maxwell

Axion

How does a θ -term change Maxwell's equations in media?

$$\nabla \cdot (\boldsymbol{E} + 4\pi \boldsymbol{P} - \frac{\alpha}{\pi} \boldsymbol{\theta} \boldsymbol{B}) = 0$$
$$\nabla \times (\boldsymbol{B} - 4\pi \boldsymbol{M} + \frac{\alpha}{\pi} \boldsymbol{\theta} \boldsymbol{E}) = \partial_t (\boldsymbol{E} + 4\pi \boldsymbol{P} - \frac{\alpha}{\pi} \boldsymbol{\theta} \boldsymbol{B})$$

Effectively, $P
ightarrow P - rac{lpha}{4\pi^2} heta B$

and

$$oldsymbol{M}
ightarrow oldsymbol{M} - rac{lpha}{4\pi^2} heta oldsymbol{E}$$

Magnetic field induces electric polarization

Electric field induces magnetization

How could such a "magneto-electric polarizability" arise in a solid? (need to generate a "crossed response" between **E** and **B**)

$$\left(\frac{\mathbf{p}^2}{2M} + V(\mathbf{r})\right)\psi(r) = E\psi(\mathbf{r})$$

$$V(\mathbf{r} + \mathbf{R}) = V(\mathbf{r})$$

 $\mathbf{R} \in \text{ lattice (assume cubic)}$

<u>Bloch's Theorem</u>: eigenstates = (plane wave) \times (periodic function)

 $H\psi_{n\mathbf{k}}(\mathbf{r}) = E_{n\mathbf{k}}\psi_{n\mathbf{k}}(\mathbf{r}) \qquad \psi_{n\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}u_{n\mathbf{k}}(\mathbf{r})$ $u_{n\mathbf{k}}(\mathbf{r}+\mathbf{R}) = u_{n\mathbf{k}}(\mathbf{r})$

$$\left(\frac{\mathbf{p}^2}{2M} + V(\mathbf{r})\right)\psi(r) = E\psi(\mathbf{r}) \qquad \qquad V(\mathbf{r} + \mathbf{R}) = V(\mathbf{r})$$
$$\mathbf{R} \in \text{ lattice (assume cubic)}$$

<u>Bloch's Theorem</u>: eigenstates = (plane wave) \times (periodic function)

$$\left(\frac{\mathbf{p}^2}{2M} + V(\mathbf{r})\right)\psi(r) = E\psi(\mathbf{r}) \qquad \qquad V(\mathbf{r} + \mathbf{R}) = V(\mathbf{r})$$
$$\mathbf{R} \in \text{ lattice (assume cubic)}$$

<u>Bloch's Theorem</u>: eigenstates = (plane wave) \times (periodic function)

- $H\psi_{n\mathbf{k}}(\mathbf{r}) = E_{n\mathbf{k}}\psi_{n\mathbf{k}}(\mathbf{r}) \qquad \psi_{n\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}u_{n\mathbf{k}}(\mathbf{r})$ $u_{n\mathbf{k}}(\mathbf{r}+\mathbf{R}) = u_{n\mathbf{k}}(\mathbf{r})$
- energy levels :"bands" w/ discrete label n + "gaps"
 - <u>insulators</u>: electrons fully fill bands, gap to excitations (hence "bound charges/currents")

$$\left(\frac{\mathbf{p}^2}{2M} + V(\mathbf{r})\right)\psi(r) = E\psi(\mathbf{r}) \qquad \qquad V(\mathbf{r} + \mathbf{R}) = V(\mathbf{r})$$
$$\mathbf{R} \in \text{ lattice (assume cubic)}$$

<u>Bloch's Theorem</u>: eigenstates = (plane wave) \times (periodic function)

$$H\psi_{n\mathbf{k}}(\mathbf{r}) = E_{n\mathbf{k}}\psi_{n\mathbf{k}}(\mathbf{r}) \qquad \psi_{n\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}u_{n\mathbf{k}}(\mathbf{r})$$
$$u_{n\mathbf{k}}(\mathbf{r}+\mathbf{R}) = u_{n\mathbf{k}}(\mathbf{r})$$

- energy levels :"bands" w/ discrete label n + "gaps"
 - <u>insulators</u>: electrons fully fill bands, gap to excitations (hence "bound charges/currents")
- "crystal momentum" k is continuous and periodic
 - e.g. in ID we have $k = k + 2\pi/a$

 π

 \boldsymbol{a}

E

gap

n = 2

gap

a

()

$$\left(\frac{\mathbf{p}^2}{2M} + V(\mathbf{r})\right)\psi(r) = E\psi(\mathbf{r}) \qquad \qquad V(\mathbf{r} + \mathbf{R}) = V(\mathbf{r})$$
$$\mathbf{R} \in \text{ lattice (assume cubic)}$$

<u>Bloch's Theorem</u>: eigenstates = (plane wave) \times (periodic function)

- energy levels :"bands" w/ discrete label n + "gaps"
 - <u>insulators</u>: electrons fully fill bands, gap to excitations (hence "bound charges/currents")
- "crystal momentum" k is continuous and periodic
 - e.g. in ID we have $k = k + 2\pi/a$

 \Rightarrow allowed k values = circle ["Brillouin Zone"; torus in D>1]

 π

 \boldsymbol{a}

E

n = 3

gap

n = 2

gap

 \boldsymbol{a}

0

Topology in Solids: A Glimpse

The *phase* of the wavefunction is usually unimportant, but can play a meaningful role when it changes nontrivially over a closed loop ("Berry's phase")

Nontrivial winding of Bloch wavefunctions across Brillouin Zone torii can lead to new forces on electrons.

Topology in Solids: A Glimpse

The *phase* of the wavefunction is usually unimportant, but can play a meaningful role when it changes nontrivially over a closed loop ("Berry's phase")

Nontrivial winding of Bloch wavefunctions across Brillouin Zone torii can lead to new forces on electrons.

Such forces give rise to θ term [= "Chern-Simons^{*} action"]

$$\theta = \frac{1}{2\pi} \int_{\mathrm{BZ}} d^3 k \epsilon_{ijk} \mathrm{Tr}[\mathcal{A}_i \partial_j \mathcal{A}_k - i \frac{2}{3} \mathcal{A}_i \mathcal{A}_j \mathcal{A}_k]$$

 ${\cal A}_j^{mn}=i\langle u_{m{f k}}|\partial_j|u_{m{f k}}
angle$ [Qi-Hughes-Zhang '08; Essin-Moore-Vanderbilt '09]

... but *microscopic* details are gory (and take a whole textbook)

Berry Phases in Electronic Structure Theory Electric Polarization, Orbital Megnetization and Topological Insulators DAVID VANDERBIET

*Jim Simons left academia to start one of the world's most successful hedge funds; today, the Simons Foundation funds a lot of research into topological matter, including my Berkeley postdoc (2011-14).

Topology in Solids: A Glimpse

The *phase* of the wavefunction is usually unimportant, but can play a meaningful role when it changes nontrivially over a closed loop ("Berry's phase")

Nontrivial winding of Bloch wavefunctions across Brillouin Zone torii can lead to new forces on electrons.

Such forces give rise to θ term [= "Chern-Simons^{*} action"]

$$\theta = \frac{1}{2\pi} \int_{\mathrm{BZ}} d^3 k \epsilon_{ijk} \mathrm{Tr}[\mathcal{A}_i \partial_j \mathcal{A}_k - i \frac{2}{3} \mathcal{A}_i \mathcal{A}_j \mathcal{A}_k]$$

 ${\cal A}_j^{mn}=i\langle u_{mf k}|\partial_j|u_{mf k}
angle$ [Qi-Hughes-Zhang '08; Essin-Moore-Vanderbilt '09]

... but *microscopic* details are gory (and take a whole textbook)

Instead, let's "coarse-grain" and think about axion physics in solids in the spirit of "effective field theory"

*Jim Simons left academia to start one of the world's most successful hedge funds; today, the Simons Foundation funds a lot of research into topological matter, including my Berkeley postdoc (2011-14).

Axion term enters quantum theory only via $e^{iS_{\theta}/\hbar} = e^{\frac{i}{\hbar}\frac{\theta}{2\pi}\int dt d^3x \frac{\alpha}{2\pi} \boldsymbol{E}\cdot \boldsymbol{B}}$ Topology of electromagnetic fields requires $e^{iS_{\theta}/\hbar} = e^{i\theta n}, \ n \in \mathbb{Z}$

 $\Rightarrow \theta \equiv \theta + 2\pi$

Axion term enters quantum theory only via $e^{iS_{\theta}/\hbar} = e^{\frac{i}{\hbar}\frac{\theta}{2\pi}\int dt d^3x \frac{\alpha}{2\pi} \boldsymbol{E} \cdot \boldsymbol{B}}$ Topology of electromagnetic fields requires $e^{iS_{\theta}/\hbar} = e^{i\theta n}, \ n \in \mathbb{Z}$

$$\Rightarrow \theta \equiv \theta + 2\pi$$

Axion term enters quantum theory only via $e^{iS_{\theta}/\hbar} = e^{\frac{i}{\hbar}\frac{\theta}{2\pi}\int dt d^{3}x \frac{\alpha}{2\pi} \boldsymbol{E} \cdot \boldsymbol{B}}$ Topology of electromagnetic fields requires $e^{iS_{\theta}/\hbar} = e^{i\theta n}, \ n \in \mathbb{Z}$ $\Rightarrow \theta \equiv \theta + 2\pi$

time-reversal
$$\mathcal{T}: (\mathbf{x}, t) \to (\mathbf{x}, -t) \Rightarrow$$
 $\begin{array}{c} E \to E \\ B \to -B \end{array}$

Axion term enters quantum theory only via $e^{iS_{\theta}/\hbar} = e^{\frac{i}{\hbar}\frac{\partial}{2\pi}\int dt d^{3}x} \frac{\alpha}{2\pi} \boldsymbol{E} \cdot \boldsymbol{B}$ Topology of electromagnetic fields requires $e^{iS_{\theta}/\hbar} = e^{i\theta n}, \ n \in \mathbb{Z}$ $\Rightarrow \theta \equiv \theta + 2\pi$

time-reversal
$$\mathcal{T}: (\mathbf{x}, t) \to (\mathbf{x}, -t)$$
 \Rightarrow $E \to E$ inversion $\mathcal{I}: (\mathbf{x}, t) \to (-\mathbf{x}, t)$ \Rightarrow $E \to -B$ $\mathcal{I}: (\mathbf{x}, t) \to (-\mathbf{x}, t)$ \Rightarrow $E \to -E$ $B \to B$

Axion term enters quantum theory only via $e^{iS_{\theta}/\hbar} = e^{\frac{i}{\hbar}\frac{\theta}{2\pi}\int dt d^{3}x \frac{\alpha}{2\pi} \boldsymbol{E} \cdot \boldsymbol{B}}$ Topology of electromagnetic fields requires $e^{iS_{\theta}/\hbar} = e^{i\theta n}, \ n \in \mathbb{Z}$ $\Rightarrow \theta \equiv \theta + 2\pi$

time-reversal
$$\mathcal{T}: (\mathbf{x}, t) \to (\mathbf{x}, -t)$$
 \Rightarrow $E \to E$ inversion $\mathcal{I}: (\mathbf{x}, t) \to (-\mathbf{x}, t)$ \Rightarrow $E \to -B$ Both of these transform $\theta \to -\theta$ $B \to B$

Axion term enters quantum theory only via $e^{iS_{\theta}/\hbar} = e^{\frac{i}{\hbar}\frac{\theta}{2\pi}\int dt d^{3}x \frac{\alpha}{2\pi} \boldsymbol{E} \cdot \boldsymbol{B}}$ Topology of electromagnetic fields requires $e^{iS_{\theta}/\hbar} = e^{i\theta n}, \ n \in \mathbb{Z}$ $\Rightarrow \theta \equiv \theta + 2\pi$

Consider two symmetries of many solids:

Both of these transform

 $\theta
ightarrow - heta$

Only values consistent with either symmetry: $\theta = 0, \pi$ Other values forbidden $\Rightarrow \theta$ can't continuously vary \Rightarrow quantized Symmetry can fix θ independent of material details!

S.A. Parameswaran | Axion Electrodynamics in Solids | Oxford Saturday Morning of Theoretical Physics 26.11.22
Superficially:

$$oldsymbol{P}
ightarrow oldsymbol{P} - rac{lpha}{4\pi^2} heta oldsymbol{B}$$

and

$$oldsymbol{M}
ightarrow oldsymbol{M} - rac{lpha}{4\pi^2} heta oldsymbol{E}$$

Magnetic field induces electric polarization Electric field induces magnetization

Superficially:

$$P \rightarrow P - \frac{lpha}{4\pi^2} \theta B$$

and

$$oldsymbol{M}
ightarrow oldsymbol{M} - rac{lpha}{4\pi^2} heta oldsymbol{E}$$

Magnetic field induces electric polarization Electric field induces magnetization

But consider the modified Maxwell equations (the ones w/ sources):

$$\nabla \cdot (\boldsymbol{E} + 4\pi \boldsymbol{P} - \frac{\alpha}{\pi} \boldsymbol{\theta} \boldsymbol{B}) = 0$$
$$\nabla \times (\boldsymbol{B} - 4\pi \boldsymbol{M} + \frac{\alpha}{\pi} \boldsymbol{\theta} \boldsymbol{E}) = \partial_t (\boldsymbol{E} + 4\pi \boldsymbol{P} - \frac{\alpha}{\pi} \boldsymbol{\theta} \boldsymbol{B})$$

Superficially:

$$oldsymbol{P}
ightarrow oldsymbol{P}
ightarrow oldsymbol{P} - rac{lpha}{4\pi^2} heta oldsymbol{B}$$

and

$$oldsymbol{M}
ightarrow oldsymbol{M} - rac{lpha}{4\pi^2} heta oldsymbol{E}$$

Magnetic field induces electric polarization Electric field induces magnetization

But consider the modified Maxwell equations (the ones w/ sources):

$$\nabla \cdot (\boldsymbol{E} + 4\pi \boldsymbol{P} - \frac{\alpha}{\pi} \boldsymbol{\theta} \boldsymbol{B}) = 0$$

$$\nabla \times (\boldsymbol{B} - 4\pi \boldsymbol{M} + \frac{\alpha}{\pi} \boldsymbol{\theta} \boldsymbol{E}) = \partial_t (\boldsymbol{E} + 4\pi \boldsymbol{P} - \frac{\alpha}{\pi} \boldsymbol{\theta} \boldsymbol{B})$$

Expanding and rearranging,

$$\nabla \cdot (\boldsymbol{E} + 4\pi \boldsymbol{P}) = \frac{\alpha}{\pi} \boldsymbol{B} \cdot \nabla \theta + \frac{\alpha}{\pi} \theta \nabla \cdot \boldsymbol{B}$$
$$\nabla \times (\boldsymbol{B} - 4\pi \boldsymbol{M}) = \partial_t (\boldsymbol{E} + 4\pi \boldsymbol{P}) + \frac{\alpha}{\pi} (\boldsymbol{E} \times \nabla \theta - \boldsymbol{B} \partial_t \theta) - \frac{\alpha}{\pi} \theta (\nabla \times \boldsymbol{E} + \partial_t \boldsymbol{B})$$

Superficially: P -

$$\rightarrow \boldsymbol{P} - \frac{\alpha}{4\pi^2} \theta \boldsymbol{B}$$

and

$$oldsymbol{M}
ightarrow oldsymbol{M} - rac{oldsymbol{lpha}}{4\pi^2} heta oldsymbol{E}$$

Magnetic field induces electric polarization

Electric field induces magnetization

But consider the modified Maxwell equations (the ones w/ sources):

$$\nabla \cdot (\boldsymbol{E} + 4\pi \boldsymbol{P} - \frac{\alpha}{\pi} \boldsymbol{\theta} \boldsymbol{B}) = 0$$

Expanding and rearranging,

$$\nabla \times (\boldsymbol{B} - 4\pi \boldsymbol{M} + \frac{\alpha}{\pi} \boldsymbol{\theta} \boldsymbol{E}) = \partial_t (\boldsymbol{E} + 4\pi \boldsymbol{P} - \frac{\alpha}{\pi} \boldsymbol{\theta} \boldsymbol{B})$$

Using the 2 source-free Maxwell equations $\nabla \cdot \boldsymbol{B} = 0$ $\nabla \times \boldsymbol{E} = -\partial_t \boldsymbol{B}$ $\nabla \cdot (\boldsymbol{E} + 4\pi \boldsymbol{P}) = \frac{\alpha}{\pi} \boldsymbol{B} \cdot \nabla \theta + \frac{\alpha}{\pi} \theta \nabla \boldsymbol{B}$

$$\nabla \times (\boldsymbol{B} - 4\pi\boldsymbol{M}) = \partial_t (\boldsymbol{E} + 4\pi\boldsymbol{P}) + \frac{\alpha}{\pi} (\boldsymbol{E} \times \nabla\theta - \boldsymbol{B}\partial_t\theta) - \frac{\alpha}{\pi} \theta (\nabla \times \boldsymbol{E} + \partial_t \boldsymbol{B})$$

Superficially: P -

$$\rightarrow \boldsymbol{P} - \frac{\alpha}{4\pi^2} \theta \boldsymbol{B}$$

and

$$oldsymbol{M}
ightarrow oldsymbol{M} - rac{oldsymbol{lpha}}{4\pi^2} heta oldsymbol{E}$$

Magnetic field induces electric polarization Electric field induces magnetization

But consider the modified Maxwell equations (the ones w/ sources):

$$\boldsymbol{\nabla} \cdot (\boldsymbol{E} + 4\pi \boldsymbol{P} - \frac{\alpha}{\pi} \boldsymbol{\theta} \boldsymbol{B}) = 0$$

$$\nabla \times (\boldsymbol{B} - 4\pi \boldsymbol{M} + \frac{\alpha}{\pi} \boldsymbol{\theta} \boldsymbol{E}) = \partial_t (\boldsymbol{E} + 4\pi \boldsymbol{P} - \frac{\alpha}{\pi} \boldsymbol{\theta} \boldsymbol{B})$$

Expanding and rearranging, $\nabla \cdot (E + 4\pi P) = \frac{\alpha}{\pi} B \cdot \nabla \theta + \frac{\alpha}{\pi} \theta \nabla B$ Using the 2 source-free Maxwell equations $\nabla \cdot B = 0$ $\nabla \times E = -\partial_t B$

 $\nabla \times (\boldsymbol{B} - 4\pi\boldsymbol{M}) = \partial_t (\boldsymbol{E} + 4\pi\boldsymbol{P}) + \frac{\alpha}{\pi} (\boldsymbol{E} \times \nabla\theta - \boldsymbol{B}\partial_t\theta) - \frac{\alpha}{\pi} \theta (\nabla \times \boldsymbol{E} + \partial_t \boldsymbol{B})$

Maxwell's equations are modifed <u>only</u> if θ varies in space or time (e.g. at interfaces between systems with $\theta = 0$ and $\theta = \pi$)

Consider interface between $\theta = 0$ and $\theta = \pi$ and apply <u>only</u> B field as shown

$$oldsymbol{
abla} \cdot oldsymbol{E} = rac{lpha}{\pi} rac{\partial heta}{\partial z} oldsymbol{B}$$

Consider interface between $\theta = 0$ and $\theta = \pi$ and apply <u>only</u> B field as shown

$$\boldsymbol{\nabla}\cdot \boldsymbol{E} = rac{lpha}{\pi}rac{\partial heta}{\partial z} \boldsymbol{B}$$

 \Rightarrow surface charge density

$$\sigma = \frac{\alpha}{\pi} \boldsymbol{B} \int_{-a}^{a} dz \frac{\partial \theta}{\partial z} = \alpha \boldsymbol{B}$$

appears at the interface

Consider interface between $\theta = 0$ and $\theta = \pi$ and apply <u>only</u> B field as shown

$$\boldsymbol{\nabla}\cdot \boldsymbol{E} = rac{lpha}{\pi}rac{\partial heta}{\partial z} \boldsymbol{B}$$

 \Rightarrow surface charge density

$$\sigma = \frac{\alpha}{\pi} \boldsymbol{B} \int_{-a}^{a} dz \frac{\partial \theta}{\partial z} = \alpha \boldsymbol{B}$$

appears at the interface

This generates *E* parallel to *B*, inside the material, with strength related by fine structure constant!

Consider interface between $\theta = 0$ and $\theta = \pi$ and apply only *E* field as shown

Consider interface between $\theta = 0$ and $\theta = \pi$ and apply <u>only</u> *E* field as shown

$$\nabla \times \boldsymbol{B} = -\frac{lpha}{\pi} \nabla \theta \times \boldsymbol{E} = \frac{lpha}{\pi} \frac{\partial \theta}{\partial z} \boldsymbol{E}_{y}$$

 \Rightarrow surface current density

$$K_x = -\frac{\alpha}{4\pi^2} \int_{-a}^{a} dz \frac{\partial\theta}{\partial z} = -\frac{\alpha}{4\pi} E_y$$

appears at the interface (1/4 π from Ampere's law)

Consider interface between $\theta = 0$ and $\theta = \pi$ and apply <u>only</u> *E* field as shown

Ζ

$$\nabla \times \boldsymbol{B} = -\frac{lpha}{\pi} \nabla \theta \times \boldsymbol{E} = \frac{lpha}{\pi} \frac{\partial \theta}{\partial z} \boldsymbol{E}_{y}$$

 \Rightarrow surface current density

$$K_x = -\frac{\alpha}{4\pi^2} \int_{-a}^{a} dz \frac{\partial\theta}{\partial z} = -\frac{\alpha}{4\pi} E_y$$

appears at the interface (1/4 π from Ampere's law)

This generates B parallel to E inside the material, with strength related by fine structure constant!

"Half Integer Quantized Hall Effect" on Surfaces

We have just shown that applying an electric field **E** parallel to the surface generates a quantized surface current perpendicular to **E**:

$$K_x = -\frac{\alpha}{4\pi} E_y$$

"Half Integer Quantized Hall Effect" on Surfaces

We have just shown that applying an electric field **E** parallel to the surface generates a quantized surface current perpendicular to **E**:

$$K_x = -\frac{\alpha}{4\pi} E_y$$

This is a version of the Hall effect, more familiar for conductors in a B field (transverse **E** field required to overcome Lorentz force and maintain a fixed current) [E. Hall, PhD Thesis, 1879]

"Half Integer Quantized Hall Effect" on Surfaces

We have just shown that applying an electric field **E** parallel to the surface generates a quantized surface current perpendicular to **E**:

$$K_x = -\frac{\alpha}{4\pi} E_y$$

This is a version of the Hall effect, more familiar for conductors in a B field (transverse **E** field required to overcome Lorentz force and maintain a fixed current) [E. Hall, PhD Thesis, 1879]

> surfaces between insulators with $\theta=0$ and $\theta=\pi$ have a <u>half-integer</u> <u>quantized</u> "surface Hall conductivity"

$$\sigma_{xy} = (-)\frac{1}{2}\frac{e^2}{h}$$

S.A. Parameswaran | Axion Electrodynamics in Solids | Oxford Saturday Morning of Theoretical Physics 26.11.22

Surface changes near the interface are purely 2D.As such, for weak interactions (assumed here) they can <u>only</u> have*

 σ_{xy} = (integer) e^2/h

*The physics of 2D quantized Hall effects is a rich story in its own right, recognized with 3 Nobel Prizes: von Klitzing ('85) ;Tsui, Störmer, Laughlin ('98); Haldane & Thouless ('16)

Surface changes near the interface are purely 2D.As such, for weak interactions (assumed here) they can <u>only</u> have*

 σ_{xy} = (integer) e^2/h

You can "paste" any number of 2D layers you like on the surface but they can only change the surface σ_{xy} by an integer

*The physics of 2D quantized Hall effects is a rich story in its own right, recognized with 3 Nobel Prizes: von Klitzing ('85) ;Tsui, Störmer, Laughlin ('98); Haldane & Thouless ('16)

Surface changes near the interface are purely 2D.As such, for weak interactions (assumed here) they can <u>only</u> have*

 σ_{xy} = (integer) e^2/h

You can "paste" any number of 2D layers you like on the surface but they can only change the surface σ_{xy} by an integer

*The physics of 2D quantized Hall effects is a rich story in its own right, recognized with 3 Nobel Prizes: von Klitzing ('85) ;Tsui, Störmer, Laughlin ('98); Haldane & Thouless ('16)

Surface changes near the interface are purely 2D.As such, for weak interactions (assumed here) they can <u>only</u> have*

 σ_{xy} = (integer) e^2/h

You can "paste" any number of 2D layers you like on the surface but they can only change the surface σ_{xy} by an integer

 \Rightarrow can't change "halfness" of σ_{xy}

*The physics of 2D quantized Hall effects is a rich story in its own right, recognized with 3 Nobel Prizes: von Klitzing ('85) ;Tsui, Störmer, Laughlin ('98); Haldane & Thouless ('16)

Surface changes near the interface are purely 2D.As such, for weak interactions (assumed here) they can <u>only</u> have*

 σ_{xy} = (integer) e^2/h

You can "paste" any number of 2D layers you like on the surface but they can only change the surface σ_{xy} by an integer

 \Rightarrow can't change "halfness" of σ_{xy}

Viewed as a purely 2D system our θ -interface is "anomalous" (There is no paradox since it *requires* the third dimension over which θ varies)

*The physics of 2D quantized Hall effects is a rich story in its own right, recognized with 3 Nobel Prizes: von Klitzing ('85) ;Tsui, Störmer, Laughlin ('98); Haldane & Thouless ('16)

Consider solid with $\theta = \pi$ and <u>fully</u> time-reversal symmetric (incl. surface)

Insulators have $\sigma_{xy} \neq 0$ only if T is broken: contradiction on the surface!

Consider solid with $\theta = \pi$ and <u>fully</u> time-reversal symmetric (incl. surface)

Insulators have $\sigma_{xy} \neq 0$ only if T is broken: contradiction on the surface!

Resolution of paradox: surfaces are conducting, not insulating (i.e., 2d metals that can screen surface currents)

Consider solid with $\theta = \pi$ and <u>fully</u> time-reversal symmetric (incl. surface)

Insulators have $\sigma_{xy} \neq 0$ only if T is broken: contradiction on the surface!

Resolution of paradox: surfaces are conducting, not insulating (i.e., 2d metals that can screen surface currents)

A T-symmetric system w/ $\theta = \pi$ is a "topological insulator": A new phase of matter whose interface with a trivial insulator is always metallic (as long as T is unbroken)

[Prediction in 3D: Moore & Balents '07; Fu-Kane-Mele '07; Qi-Hughes-Zhang '08; Roy* '09]

*Rahul Roy (Oxford PDRA '09-'12, now a professor at UCLA) co-discovered TIs while still a PhD student at the U. of Illinois.

Consider solid with $\theta = \pi$ and <u>fully</u> time-reversal symmetric (incl. surface)

Insulators have $\sigma_{xy} \neq 0$ only if T is broken: contradiction on the surface!

Resolution of paradox: surfaces are conducting, not insulating (i.e., 2d metals that can screen surface currents)

A *T*-symmetric system w/ $\theta = \pi$ is a "topological insulator": A new phase of matter whose interface with a trivial insulator is always metallic (as long as *T* is unbroken)

[Prediction in 3D: Moore & Balents '07; Fu-Kane-Mele '07; Qi-Hughes-Zhang '08; Roy* '09]

Experimentally detectable b/c surface metals special: host odd # of "Dirac cones"

[Hsieh et al Nature 452, 970 '08]

Dispersion of surface bands can be measured by Angle-Resolved Photoemission Spectroscopy (ARPES)

Oxford's Yulin Chen is a world leader in ARPES experiments on topological matter

*Rahul Roy (Oxford PDRA '09-'12, now a professor at UCLA) co-discovered TIs while still a PhD student at the U. of Illinois.

If $\theta = \pi$ enforced by inversion symmetry, there is no paradox: surfaces *always* break inversion so need not be metallic (still a new phase, but the signature is more subtle)

Materials: Axion Insulators

If $\theta = \pi$ enforced by inversion symmetry, there is no paradox: surfaces *always* break inversion so need not be metallic (still a new phase, but the signature is more subtle)

For purists, the term "axion insulator" is reserved for systems w/ quantized $\theta = \pi$ (besides inversion, other crystalline or magnetic symmetries can also do this)

... however, very similar (but non-quantized) response if $\theta \approx \pi$ (e.g. by breaking time-reversal w/ magnetism)

Materials: Axion Insulators

If $\theta = \pi$ enforced by inversion symmetry, there is no paradox: surfaces *always* break inversion so need not be metallic (still a new phase, but the signature is more subtle)

For purists, the term "axion insulator" is reserved for systems w/ quantized $\theta = \pi$ (besides inversion, other crystalline or magnetic symmetries can also do this)

... however, very similar (but non-quantized) response if $\theta \approx \pi$ (e.g. by breaking time-reversal w/ magnetism)

One signature of magnetoelectric effect: quantized "Faraday rotation" of polarized light

[L.Wu. et al Science 354, 1124 '16]

tricky to pin down "halfness" of a single surface - much work ongoing to do better

Imagine a sphere with $\theta=0$ inside a $\theta=\pi$ region, and place inside it a point magnetic charge or "magnetic monopole"

Imagine a sphere with $\theta=0$ inside a $\theta=\pi$ region, and place inside it a point magnetic charge or "magnetic monopole"

In $\theta = \pi$ region, axion electrodynamics produces $\boldsymbol{E} = \alpha \frac{\theta}{\pi} \boldsymbol{B} = \alpha \boldsymbol{B}$

Imagine a sphere with $\theta=0$ inside a $\theta=\pi$ region, and place inside it a point magnetic charge or "magnetic monopole"

In $\theta = \pi$ region, axion electrodynamics produces $\boldsymbol{E} = \alpha \frac{\theta}{\pi} \boldsymbol{B} = \alpha \boldsymbol{B}$

Equivalent to field of a point electric charge $q_e = \alpha q_m$

Imagine a sphere with $\theta=0$ inside a $\theta=\pi$ region, and place inside it a point magnetic charge or "magnetic monopole"

In $\theta = \pi$ region, axion electrodynamics produces $\boldsymbol{E} = \alpha \frac{\theta}{\pi} \boldsymbol{B} = \alpha \boldsymbol{B}$

Equivalent to field of a point electric charge $q_e = \alpha q_m$

Argument independent of size* of $\theta=0$ "hole" \Rightarrow monopoles are "<u>dyons</u>"

*Ultimately linked to boundary conditions on gauge fields at the origin.

<u>Teaser</u>: "Magnetic Monopoles" and Witten Effect in Materials?

Real magnetic monopoles are very difficult to detect (maybe I seen in ~40 yrs?)

<u>Teaser</u>: "Magnetic Monopoles" and Witten Effect in Materials?

Real magnetic monopoles are very difficult to detect (maybe I seen in ~40 yrs?)

... but we can have emergent monopoles in magnetic materials

Magnetic monopoles in spin ice

C. Castelnovo¹, R. Moessner^{1,2} & S. L. Sondhi³ Nature 451, 42 '08

Oxford postdoc, 2006-10

BA '94, DPhil '97, faculty '06-'07

Wykeham Professor, 2021-

<u>Teaser</u>: "Magnetic Monopoles" and Witten Effect in Materials?

Real magnetic monopoles are very difficult to detect (maybe I seen in ~40 yrs?)

... but we can have emergent monopoles in magnetic materials

Magnetic monopoles in spin ice

C. Castelnovo¹, R. Moessner^{1,2} & S. L. Sondhi³ Nature 451, 42 '08

Oxford postdoc, 2006-10

BA '94, DPhil '97, faculty '06-'07

Wykeham Professor, 2021-

The "E" and "B" fields of these monopoles are <u>also</u> emergent (correlated excitations of many spins) and in the right circumstances can also experience θ -terms.

The "Witten effect" of monopoles in this fully-emergent axion electrodynamics could have observable signatures!

Summary

Also, it is (I shall argue) not beyond the realm of possibility that fields whose properties partially mimic those of axion fields can be realized in condensed-matter systems.

Summary

Also, it is (I shall argue) not beyond the realm of possibility that fields whose properties partially mimic those of axion fields can be realized in condensed-matter systems.

Insulators can be viewed as "new vacua" for electromagnetism

We now know several insulators whose band topology places them in a new state of matter, an "axion insulator" whose "vacua" includes a θ term

There are many active experimental searches for the exotic phenomena predicted by axion electrodynamics

May be possible to also study the Witten effect, and <u>dynamical axions</u> in solids
Summary

Also, it is (I shall argue) not beyond the realm of possibility that fields whose properties partially mimic those of axion fields can be realized in condensed-matter systems.

Insulators can be viewed as "new vacua" for electromagnetism

We now know several insulators whose band topology places them in a new state of matter, an "axion insulator" whose "vacua" includes a θ term

There are many active experimental searches for the exotic phenomena predicted by axion electrodynamics

May be possible to also study the Witten effect, and <u>dynamical axions</u> in solids

Whether or not axions¹ have any physical reality, their study can be a useful intellectual exercise.

Summary

Also, it is (I shall argue) not beyond the realm of possibility that fields whose properties partially mimic those of axion fields can be realized in condensed-matter systems.

Insulators can be viewed as "new vacua" for electromagnetism

We now know several insulators whose band topology places them in a new state of matter, an "axion insulator" whose "vacua" includes a θ term

There are many active experimental searches for the exotic phenomena predicted by axion electrodynamics

May be possible to also study the Witten effect, and <u>dynamical axions</u> in solids

"It's very difficult to know whether something is useful or not, but one *can* know that it's exciting."

- F.D.M. Haldane, October 4, 2016, on the day of the Nobel announcement